skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fascetti, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With rapid urbanization necessitating innovative strategies for urban adaptation, combining technological advancements and holistic methodologies, this research explored the synergy between urban metabolism and digital twin technologies to foster sustainable urban development. A pilot model representing a university building, including the surrounding streetscape, was constructed using the Unreal Engine. By using available CAD design drawings and GIS technologies, the physical spaces were modelled. The physical and analytical environments were integrated into the digital twin; material flow analysis was also conducted. The developed framework aims to offer a detailed visualization of building behaviour, facilitating comparisons with urban metabolism analysis. This approach holds promise for sustainable urban design by integrating diverse data streams through digital twin technologies. The potential impact of this research extends to the tracking, mapping, and analysis of crucial resource flows, such as materials, water, energy, and waste, fostering circular economy strategies within the built environment. Understanding urban metabolism facilitates the identification of resource-efficient opportunities, promoting resource recovery and reuse to reduce the environmental impact of urban cores. Embracing digital twin technologies and urban metabolism analysis offers cities streamlined data collection processes, supporting standardization and sustainable urban practices. This study marks a critical step towards integrating diverse data streams into urban metabolism analysis, aligning with circularity objectives in the built environment. By adopting this framework, cities can better understand new production and consumption patterns that prioritize the responsible use of natural resources, contributing to a more sustainable and resilient future. 
    more » « less